Repeated Elements in Plant Genomes

1. Telomeres
2. Centromeric Repeats
3. Retrotransposons (Class I Transposons)
4. DNA transposons (Class II Transposons)
5. MITEs (Miniature Inverted Terminal Repeat Elements)
Telomeres are the physical ends of linear chromosomes

Consists of nucleic acid/protein complexes in the vast majority of cases

Present in eukaryotic organisms

Molecular clock to monitor replicative history of the cell
Telomeres are maintained using:
1. RNA template (TER locus)
2. Reverse Transcriptase activity

Telomerase activity maintains the terminal DNA repeats

Telomerase binding proteins (TRFs) bind single and double stranded telomerase repeats

TRFs
1. Protect against DNA repair
2. End-joining of chromosomes
3. Spurious exonuclease activity
Initial sequencing of end fragments of DNA from chromosomes showed they possessed tandem arrays of simple repeats:

- Humans: (TTAGG)n
- Arabidopsis: (TTAGGG)n
- Rice: (TTTAGGG)n

The RNA template from the TER locus is a complement to the repeat and is used to extend the telomere.
This coordinated activity solves the end-replication problems for the chromosome and ensures the telomeres maintain their length.

McKnight and Shippen, 2004
Telomeres

Loss of telomerase activity will yield severe phenotypes after several mitotic cycles.

Arabidopsis plants lacking telomerase will begin showing pleiotropic effects in the 6th and 7th generations.

By the 9th generation, these plants have entered a terminal stage of sterility and dwarfism.

By the 10th generation, the effects are lethal.
Telomeres

Visualization of the phenotypic progression in successive generations resulting from a loss of telomerase

Riha et al 2001
Telomeres

SEM of a telomere loop from Pea

Note circular plasmid ~3kbp in length inside telomere loop

McKnight and Shippen, 2004
Telomeres in rice have been characterized

Mizuno et al., 2006
Subtelomere/telomere junctions have polymorphic telomere repeats

Figure 4. Composition of TTAGGG repeat and its variants at the subtelomere–telomere junction. Each box represents the seven-nucleotide unit of telomere repeat TTAGGG (normal, white) and the different variants as shown in the key. Arrow, junction between telomere and subtelomere.

Mizuno et al., 2006
Centromeres are heterochromatic components of the genome with vital roles.

Centromeres serve as the assembly point for the kinetochore for post-replicative chromosome division.

Centromeres are:
1. Relatively “gene” poor
2. Dense with various types of repeats

These repeats consist of satellite DNA and transposable elements.
Estimated sizes range from 125 bp (yeast) to several megabases (maize)

Varying structural arrangements:
- An ordered arrangement of repeats (fission yeast)
- Tandem arrays of repeated sequence studded with transposable elements (plants, humans)

The core centromere binds the protein CENH3

CENH3 is a variant of the histone H3 but associates specifically with the centromere

CENH3 among species has conserved histone domain but a divergent N terminal domain
In rice, the centromeric satellite repeats are 155 bp in length.

These satellite repeats are called CentO in rice.

Centromeric repeats are species specific and widely divergent among eukaryotes.

Satellite repeat organization can vary widely among the chromosomes of a species.

The centromeric and pericentromeric regions also have significant content of retrotransposons.

The combined size and repetitive nature of centromeres make them difficult to sequence completely.
Centromeres from rice chromosomes 4 and 8 have been sequenced completely.

Chromosome 4:
18 separate tracts of CentO repeats clustered in 124 kb of sequence.

Chromosome 8:
3 separate tracts of CentO repeats clustered in 78 kb of sequence.

Note that the arrangement of the CentO repeats is very distinct between the two different centromeres in rice.
Centromeres

Schematic of the centromere of chromosome 8 of rice

Wu et al 2004
Centromeres

Schematic of the centromere of chromosome 4 of rice

Zhang et al 2004
Divergence in Centromere repeats in the Oryza genus

CRR – retroelement specific to centromeres
CentO – Oryza centromeric repeat
CentO-C1 – Centromeric repeat that shares homology with maize and rice
CentO-F – No homology to CentO or CentO-C1
 Novel centromeric repeat
AA, BB, CC, DD, EE, FF are the names of genome types in Oryza genus
AABB is a tetraploid allopoloidy event

Note that the CC genomes have replaced the CentO with a divergent repeat
Note the FF genome has a novel centromeric repeat (AA diverged from FF ~7-9 million years ago)

Dawe, 2005
Retrotransposons are Class I transposable elements

Ubiquitous in the plant kingdom, well studied in monocots

A major constituent of many plant genomes

Mobilization via an RNA intermediate that leads to accumulation within the genome

Significant structural relationships to retroviruses

Can create mutations and affect transcription of neighboring genes
Retrotransposons are Class I transposable elements

Features common to these elements:

- LTR – Long terminal repeats
- PBS – Primer binding site
- Coding sequence – *gag, pol, int* genes
- PPT – Polypurine tract
- TSD – Target site duplication
Retrotransposons

LTR retrotransposons

Ty1-copia group

Ty3-gypsy group

Non-LTR retrotransposons

LINE

SINE

Kumar and Bennetzen 1999
Formation of a target site duplication

1. Cleavage of ds DNA
2. Insertion of TE into cleaved DNA
3. Fill in of overhangs by DNA repair to create target site duplications
LINE – Long Interspersed Repetitive Elements

LINEs are related to LTR transposons, but distinct in their structure

Differences between LINEs and retrotransposons:

- LINEs lack LTRs
- gag protein encodes an endonuclease activity (cleave DNA)
- pol has RT and RNaseH motifs but lacks an integrase
- Has internal RNA pol II and pol III promoters
Retrotransposons

SINE – Short Interspersed Nuclear Element

SINEs are originally derived from tRNA sequences

SINEs are distinct from retrotransposons

- Short (<500bp) nonautonomous elements
- These elements lack LTRs and introns
- Possess an encoded polyA tail
- Cross-mobilization would need to be the method for transposition
Retrotransposons

LTR retrotransposons

Ty1-copia group

Ty3-gypsy group

Non-LTR retrotransposons

LINE

SINE

Kumar and Bennetzen 1999
Retrotransposons

Copy number for classes of elements varies among genomes

Rice

- Non-LTR transposons
- LTR transposons
- MITEs
- DNA transposons

Arabidopsis

- Non-LTR transposons
- LTR transposons
- MITEs
- DNA transposons

Human

- Non-LTR transposons
- LTR transposons
- MITEs
- DNA transposons
Retrotransposons are ubiquitous in higher eukaryotes:

Maize genome is ~3000 Mbp
- >50% genome is comprised of retrotransposons

Rice genome is ~375 Mbp
- ~20% genome is retrotransposons

Arabidopsis genome is ~130 Mbp
- < 10% genome is retrotransposons

Retroelement copy number is a major determinant of genome size variation in higher plants
Retrotransposons

Maize and sorghum comparison as an illustration:

Diverged an estimated ~15 mya from one another

Both have 10 chromosomes

Excellent conservation of gene order (synteny)

Maize genome is >4x larger than the sorghum genome

Sequence analysis indicates that maize genome expansion is due to retrotransposon expansion
In maize, retroelements are often found as “nested” insertions. (Nested means that one element is inserted into another which is inserted into another)

Using the tandemly repeated LTRs, you can estimate the age of the retrotransposon by looking at rate of mutation.

[Diagram showing nested LTR retrotransposons with a graph indicating time (Myr) and % similarity LTR-LTR]
The Tos family of retrotransposons have been characterized in rice.

Three of the Tos family (Tos10, Tos17, Tos19) have been shown to be active under tissue culture conditions.

Tos17 was found to only have two copies in the Nipponbare genome.

Tos17, when activated, has a preference for insertion into low copy sequences in the rice genome.

Tos17 activation leads to a gradual accumulation of Tos17 elements in the genome.

Tos17 is being used as a functional genomics tool in rice for tagging genes.
The Southern Blot shows the accumulation of *Tos17* elements in plants that were regenerated from calli that had been in tissue culture for 3, 9, and 16 months.

Hirochika et al., 1996
DNA Transposons are Class II transposable elements

Ubiquitous in the plant kingdom

May be autonomous or non-autonomous elements

Mobilization via a cut and paste mechanism

Low copy number per genome (<100 per genome per family)

Can create mutations and affect transcription of neighboring genes
DNA transposons (Class II) have several key features

1. Target site duplications produced upon insertion
2. An ORF containing the catalytic domain for transposase
3. TIR (Terminal Inverted Repeats) that can form a hairpin
4. Subterminal regions that may possess binding motifs for transposase
DNA Transposons mobilize via a cut and paste mechanism.

- Transposases cleave the transposon from genomic DNA.
- TIR (Terminal Inverted Repeats) are sequences that are present at the ends of transposons.
- End-joining genomic DNA (pink) is used to insert the transposon into a new location.
- Transposon inserts at a new location.

The diagram illustrates the process of transposon mobilization, where a transposase enzyme cleaves the transposon, and TIR sequences are used for orientation and integration at a new location.
DNA Transposons

Autonomous elements encode (minimally) a full-length transposase and TIRs

Non-autonomous elements are truncation of the parent (autonomous) elements
Non-autonomous elements can be moved in trans by a transposase encoded by the autonomous element.
DNA Transposons (autonomous and non-autonomous) are used for functional genomics.

In rice: Use of *Activator* and *Ds* from maize by transformation.

These elements can insert into a gene leading to a non-functional allele and phenotype.

Example: The promoter of *frizzy panicle* locus was tagged with *Ds*.

These mutations are now called “transposon-tagged” and can be cloned.

Example: Screen for *Ds* using PCR to obtain flanking sequence.
MITEs are Miniature Inverted Terminal Repeat Elements

Ubiquitous in the plant kingdom

Commonly associated with genic regions

Can attain high copy number (>10,000 per genome/family)

Derived from DNA class II transposons in many cases

Rapid expansion (burst) in genomes
Generalized features of MITEs

1. Small relative size (<600 bp)
2. TIRs that are similar in size with DNA transposons
3. 3bp TSD
4. Share TIR sequence motifs with DNA transposons
5. Mobilization via transposases produced from autonomous DNA transposon *in trans*
6. Extremely high copy numbers
7. Phylogenies are indicative of rapid expansion
MITEs were originally found in a computer search of maize genomic DNA.

The original element *Tourist* was found in the waxy locus of maize.

Stowaway was found in sorghum genomic DNA.

MITEs are found throughout the plant kingdom.

MITEs are viewed as derivatives of autonomous elements which may be recent or ancient.
MITEs can be the product of a direct deletion:

Example: mPING is a direct deletion of the autonomous element Ping
mPIF is a direct deletion of the autonomous element PIF

Copy number: 72 copies mPING and 1 copy PING in rice genome
MITEs can be highly diverged from a presumptive autonomous element:

Example: *Stowaway* has extremely limited homology in its TIRs with its autonomous parent *mariner*
Stowaway has no central homology with *mariner*

Copy number: 34 copies of *mariner* and 22,000 copies of *Stowaway*
OsMar5 (Mariner family of transposable elements)
- HTH- Helix-turn-helix domain involved in DNA binding
- Catalytic domain is responsible for transposition

Yeast one hybrid assays indicated that the HTH domains facilitated binding to TIR sequences of Stowaway elements
DNA Transposons

Feschotte et al., 2005

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>Copy #</th>
<th>Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os5cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>3,000-4,500</td>
<td></td>
</tr>
<tr>
<td>St21cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>1,250-1,500</td>
<td></td>
</tr>
<tr>
<td>St51-5'</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>1,000-2,000</td>
<td></td>
</tr>
<tr>
<td>St24cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>1,200-2,000</td>
<td></td>
</tr>
<tr>
<td>St8cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>700-1,200</td>
<td></td>
</tr>
<tr>
<td>St30cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td>St20cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>500-1,000</td>
<td></td>
</tr>
<tr>
<td>St13cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>500-1,000</td>
<td></td>
</tr>
<tr>
<td>St28cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>400-700</td>
<td></td>
</tr>
<tr>
<td>St34-5'</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>2,000-3,500</td>
<td></td>
</tr>
<tr>
<td>St46cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>200-250</td>
<td></td>
</tr>
<tr>
<td>St42cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>500-700</td>
<td></td>
</tr>
<tr>
<td>St18cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>1,250-1,500</td>
<td></td>
</tr>
<tr>
<td>St52cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>200-400</td>
<td></td>
</tr>
<tr>
<td>St35cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>1,200-2,000</td>
<td></td>
</tr>
<tr>
<td>St16cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>700-1,200</td>
<td></td>
</tr>
<tr>
<td>St15cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>1,200-2,000</td>
<td></td>
</tr>
<tr>
<td>St26cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>250-350</td>
<td></td>
</tr>
<tr>
<td>St14cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>600-800</td>
<td></td>
</tr>
<tr>
<td>St11cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>3,500-4,000</td>
<td></td>
</tr>
<tr>
<td>St1cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>2,000-3,000</td>
<td></td>
</tr>
<tr>
<td>St5cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>750-1,000</td>
<td></td>
</tr>
<tr>
<td>St32-5'</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>750-1,000</td>
<td></td>
</tr>
<tr>
<td>St10-3'</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td>50-100</td>
<td></td>
</tr>
<tr>
<td>St29cons</td>
<td>CTCCCTCCGTCCCCCAAAATATATGAGCTTCT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pack MULEs are an interesting twist where gene amplification, exon swapping and transposons meet

MULEs are Mutator-like elements

Mutator (Mu) is an element that was originally identified in maize
- Maize lines were grown in radioactive conditions and *Mu* became active

Mu–like elements have been identified in other grass species

Mu is a bit different than other DNA transposons, it has a long tandem site duplication (8-10bp) and has very long TIRs (hundreds of bp)
Pack-MULEs are Mu-like elements in rice that have captured genes/exons between the TIRs.

Note in the figure above the TSDs are the small arrows, the TIRs are the larger arrows and the contained gene is shown in color (with ATG and TGA shown).

These capture genes can be mobilized by the *Mutator* element AND they can amplify their copy number.

Jiang et al., 2004
Pack-MULEs

PACK-Mules can also contain more than one gene.

In fact, the Pack-MULEs can merge together exons from genes that are genetically unlinked.

The figure to the right is busy but shows how the origins of the genes/exons Pack-MULEs.

This offers an interesting mechanism whereby novel gene combinations can be generated by Mu elements and amplified.

Jiang et al., 2004
How to Identify Repeats?

- Sequence similarity search using preexisting databases of known repeat sequences
- Algorithms locating repeats exclusively relying on sequence composition
Programs for Repeat Searches

- **CENSOR** (Jurka et al., 1996)
 - early program, slow
- **RepeatMasker** (Smit et al., 1996)
 - most popular, sensitive, good functionality, uses cross_match, slow
- **MaskerAid** (Bedell et al., 2000)
 - uses WU-BLAST, an enhancement of RepeatMasker in speed (~ 30 times), not as sensitive as RepeatMasker
- **BLAST, flast ...**
 - basically any similarity search program can identify repeats using a library

Major drawback of similarity searches:
- requires a repeat library (e.g. Repbase), which is available only for the well-studied organisms.
Programs for *de-novo* Repeat Identification

- **Miropeats** *(printrepeats, Parsons, 1995)*

 Uses ICAass, graphically display repeats, can only handle several hundred thousand bp

- **REPuter and REPfind** *(Kurtz et al., 2001)*

 First applied suffix trees in repeat mining. REPfind is a newer version that can identify degenerate repeats. Applies statistical significance

- **RepeatFinder** *(Volfovsky et al., 2001)*

 Merges repeats where a merged repeat exists elsewhere in the genome at least once. Boundaries not well defined. Group members may not share similarity at all
Programs for *de-novo* Repeat Identification, cont’d

- RECON (Bao and Eddy, 2002)
 WU-BLAST for pair-wise alignment, multiple alignment used to define boundaries of repeat elements. Boundaries of repeat families not available.

- PILER (Edgar and Myers, 2005) a suite of tools. uses its own PALS for pair-wise alignment
 - PILER-DF: to detect Dispersed Families of transposable elements
 - PILER-PS: to detect Pseudo-Satellites – repeats clustered locally
 - PILER-TA: to detect Tandem Arrays
 - PILER-TR: to detect repeat families of members with Terminal Repeats

- RepeatScout (Price and Pevzner, 2005) no pair-wise alignment needed.
 Genome is first scanned for “word” of fixed length. Starting from the most frequently found word,
 RepeatScout will extend the word in both directions, terminating at the most appropriate points (determined by score) for boundaries.
 Consensus sequence for families is generated.

Major drawback of these programs: large gene families will be included as “repeats”.
Construction of TIGR Plant Repeat Database -- Methods

- Collecting repetitive sequences from public database: GenBank, TREP, individual projects, etc
- Evaluate the sequences, remove erroneous entries
- Classification and coding
 - Repeat database for a family (e.g. TIGR Gramineae Repeat Database)
- Search the family repeats against available genomic sequences of a genus. Matches are extracted and coded, and then combined with repeats obtained previously from public databases, to create the TIGR Repeat Database for that genus.

- The TIGR Plant Repeat Databases (Nucleic Acids Res. 2004 Jan)
Repeat Distribution of Rice Genome

30 kb repeats

Retrotransposons
Transposons
MITEs
Centromere-related
Telomere-related

Lee et al. (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. PNAS. 102(33):11793-8.

Hirochika et al. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. PNAS. 93:7783-7788.